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Statistical Artifacts in Diffusion Tensor MRI (DT-MRI)

Caused by Background Noise

Peter ]. Basser'" and Sinisa Pajevic?

This work helps elucidate how background noise introduces
statistical artifacts in the distribution of the sorted eigenvalues
and eigenvectors in diffusion tensor MRI (DT-MRI) data. Al-
though it was known that sorting eigenvalues (principal diffu-
sivities) by magnitude introduces a bias in their sample mean
within a homogeneous region of interest (ROI), here it is shown
that magnitude sorting also introduces a significant bias in the
variance of the sample mean eigenvalues. New methods are
presented to calculate the mean and variance of the eigenvec-
tors of the diffusion tensor, based on a dyadic tensor represen-
tation of eigenvalue-eigenvector pairs. Based on their use it is
shown that sorting eigenvalues by magnitude also introduces a
bias in the mean and the variance of the sample eigenvectors
(principal directions). This required the development of new
methods to calculate the mean and variance of the eigenvec-
tors of the diffusion tensor, based on a dyadic tensor represen-
tation of eigenvalue-eigenvector pairs. Moreover, a new ap-
proach is proposed to order these pairs within an ROI. To do
this, a correspondence between each principal axis of the dif-
fusion ellipsoid, an eigenvalue-eigenvector pair, and a dyadic
tensor constructed from it is exploited. A measure of overlap
between principal axes of diffusion ellipsoids in different voxels
is defined that employs projections between these dyadic ten-
sors. The optimal eigenvalue assignment within an ROl maxi-
mizes this overlap. Bias in the estimate of the mean and of the
variance of the eigenvalues and of their corresponding eigen-
vectors is reduced in DT-MRI experiments and in Monte Carlo
simulations of such experiments. Improvement is most signifi-
cant in isotropic regions, but some is also observed in aniso-
tropic regions. This statistical framework should enhance our
ability to characterize microstructure and architecture of
healthy tissue, and help to assess its changes in development,
disease, and degeneration. Mitigating these artifacts should
also improve the characterization of diffusion anisotropy and
the elucidation of fiber-tract trajectories in the brain and in
other fibrous tissues. Magn Reson Med 44:41-50, 2000.
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Diffusion tensor MRI (DT-MRI) (1) combines a measure-
ment of the effective diffusion tensor (2) and conventional
MRI. From this tensor, three eigenvalues (principal diffu-
sivities) and three eigenvectors (principal directions) are
calculated in each voxel (1). These eigenvalues represent
the effective (scalar) diffusivities along the three corre-
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sponding principal directions that define the local “fiber”
coordinate system (1). The eigenvalues of the diffusion
tensor, along with other scalar quantities calculated from
them (such as the orientationally averaged diffusivity,
% Trace(D); as well as measures of diffusion anisotropy,
éimilarity, and organization (1,3,4) characterize distinct
microstructural and architectural features of tissue. In gen-
eral, these MRI “stains” provide useful physiological in-
formation noninvasively, not only about the state of nor-
mal tissue, but about its changes in development, aging,
disease, and degeneration.

When there is background noise present in diffusion-
weighted images (DWI), it is not clear how to sort the
eigenvalues consistently within a homogeneous region of
interest (ROI). Ordering eigenvalues by increasing magni-
tude in each voxel results in a “sorting bias,” whose sever-
ity increases as the signal-to-noise ratio (SNR) decreases
(5). Using Monte Carlo simulations of DT-MRI experi-
ments in ROIs containing isotropic or anisotropic media,
Pierpaoli and Basser (6) showed that the sample mean of
the largest sorted eigenvalue in an ROI, \,, is always larger
than its true mean, whereas the sample mean of the small-
est sorted eigenvalue within an ROI, \,, is always smaller
than its true mean. This artifact results in an overestimate
of the degree of diffusion anisotropy within each voxel at
all SNRs (e.g., as measured by \,/\;) (6), and may lead one
to the erroneous conclusion that differences among sorted
eigenvalues within an ROI are statistically significant,
even in isotropic media whose “true” eigenvalues are all
equal. This artifact also has made it difficult to interpret
whether differences among sorted eigenvalues measured
in skeletal (7) and cardiac muscle (8) were biologically
meaningful or were the result of noise.

In considering the problems of sorting bias, it was clear
that there were no methods available to quantify, repre-
sent, and display bias in the distributions of both eigen-
values and eigenvectors of the diffusion tensor in a self-
consistent manner. Here we propose new analytical and
graphical methods for doing so. Correlations between
sorted eigenvalues and eigenvectors (9) suggest that, if the
diffusion tensor field within an ROI is homogeneous, then
sorting eigenvalues and their corresponding eigenvectors
in tandem could reduce these statistical artifacts. How-
ever, implementing this schema entails solving several
challenging problems: to represent geometric and alge-
braic features of eigenvalue—eigenvector pairs (the former
being scalars and the latter, vectors), and to develop a new
measure of overlap between such eigenvalue—eigenvector
pairs in different voxels. Using this framework, we can
then evaluate the improvement in this proposed method
over magnitude sorting. Some material here was previ-
ously presented in abstract form (10).
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THEORY

Estimates of the Mean and Variance of the Distribution of
Eigenvalues Within an ROI

To assess the severity of the sorting artifact, it is helpful to
define various measures to characterize the bias in the
mean and variance of the eigenvalues within an ROI. In
Monte Carlo simulations, bias of the mean can be assessed
easily, since the “true” eigenvalues are always prescribed
or known in advance. For the three eigenvalues, the frac-
tional bias in the mean is given by:
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where A\}! represents the sample ROI-averaged eigen-

value, the sample mean eigenvalue is
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and \[™° represents the true eigenvalue. The unbiased
sample variance of each eigenvalue is

N
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where it is assumed that the ROI contains N voxels.

A measure of the dispersion of the distribution of eigen-
values, which is sensitive to their order or assignment, is
the range. Dividing this quantity by the mean of this dis-
tribution yields

)\17)\3

Range/Mean =

in which it is assumed that A, > \;. The mean diffusivity
(\), which is not sensitive to sorting order (1), provides a
reliable reference standard for comparing the range of eig-
envalues in different tissue compartments, since (\) is
relatively unbiased for SNR above about 5 (11), and has
been shown to be virtually indistinguishable in normal
gray and white matter in cat (12) and in human (13) brain.
Moreover, in cerebrospinal fluid (CSF) the larger expected
difference between N\, and \, is normalized by a propor-
tionately larger denominator. Ideally, in isotropic regions,
such as gray matter and CSF, Range/Mean (R/M) should
vanish. Finally, R/M grows linearly with the sorting bias in
N\, and A,. Measures of diffusion anisotropy that we pro-
posed previously, such as the relative and fractional an-
isotropy (3,4), by design are insensitive to the order in
which eigenvalues are sorted, and unlike R/M cannot be
used to assess the efficacy of an eigenvalue—eigenvector
sorting algorithm.

Estimates of the Mean and Variance of the Distribution of
Eigenvectors Within an ROI

To date, it has not been possible to reliably report statistics
about the eigenvectors within an ROI because of the inher-
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ent sign ambiguity of each eigenvector. For a given prin-
cipal diffusivity (or eigenvalue \;), the sign of its corre-
sponding eigenvector €, is indeterminate (i.e., one is free to
choose either +¢; or —¢;). Data with such antipodal sym-
metry are called axial data, the statistics of which are
described elsewhere (14). This sign ambiguity complicates
the calculation of ROI-averaged eigenvectors, because one
can use either the positive or the negative eigenvector
when calculating the sample mean (ROI-averaged eigen-
vector). So, arithmetically averaging eigenvectors within
an ROI produces a poor estimate of their mean.

However, representing each eigenvector as a second-
order dyadic tensor® allows us to calculate a sample mean
eigenvector unambiguously, as well as to quantify the
dispersion about the mean within an ROI. Rather than
averaging the eigenvectors themselves, we first average
their dyadics within an ROL:
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Here we have represented the positive, semidefinite sec-
ond-order dyadic tensor as a 3 X 3 symmetric matrix
whose elements contain products of the x, y, and z com-
ponents of the eigenvector €;. To find the ROI-averaged
eigenvector (€;), we calculate the eigenvector of (g€}
above that corresponds to its largest eigenvalue g% (14). We
quantify the bias in (€;) by using the angle between the true
eigenvector and the sample mean eigenvector, A6;, (ob-
tained from (g,£7)):

A®,; = arccos(|(g;) - €I™]). (6]

Moreover, the two remaining eigenvalues of (g,£7), BJ
and B% (14), can be used to characterize the dispersion
about the sample mean eigenvector (€,). A dispersion mea-
sure we propose is the square root of the ratio of the
average of the two smaller eigenvalues and the largest one:

Bl + B
\ 2p] 71

This quantity attains a minimum value of 0 when there is
no scatter about the mean eigenvector (i.e., B; = B4 = 0)
and attains a maximum of 1 when the eigenvectors are
uniformly distributed about the sphere (i.e., Bi = B4 =
BL). Geometrically, Eq. [7] is akin to the radius of the “cone
of uncertainty” around an eigenvector having a unit length
(16). This dispersion measure also grows approximately
linearly with the standard deviation of normally distrib-
uted angular data (a < 7w/2).

3 The first use of the dyadic tensor in DT-MRI was in Ref. 15 to classify
different types of diffusion anisotropy. Here the dyadic tensor is used in an
altogether different context.
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Measuring Overlap Between Eigenvalue-Eigenvector Pairs

Our proposed method to reduce artifacts in magnitude
sorting of eigenvalues is to sort them and their correspond-
ing eigenvectors in pairs, because in a homogeneous ROI,
eigenvalues and eigenvectors contain complementary in-
formation that together specify the size, shape, and orien-
tation of the diffusion ellipsoid that characterizes diffu-
sion in each voxel. If we consistently assign or order the
principal axes of the ellipsoids within an ROI, so as to
maximize the overlap among these ellipsoids, we could
ameliorate the sorting bias that results from considering
only the lengths of the principal axes of these diffusion
ellipsoids.

This method entails (1) establishing a correspondence
between a principal axis of a diffusion ellipsoid, an eigen-
value—eigenvector pair, and a dyadic tensor; (2) defining a
new quantity that measures the degree of overlap between
dyadic tensors; and (3) consistently sorting dyadics of the
diffusion tensor within an ROI by maximizing this overlap
measure.

The dyadic tensor framework described previously also
assists us in developing a means to measure the degree of
overlap of the principal axes of the diffusion tensor in
different voxels. A natural way to represent eigenvalue—
eigenvector pairs is by using a second-order dyadic tensor
space. We can construct a dyadic tensor from each eigen-
value—eigenvector pair \; and €,, by taking the outer prod-
uct of the weighted eigenvector, as follows:
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The vectors VA, coincide with the principal axes of a
diffusion ellipsoid (1,17).

Just as one uses the vector dot product to determine the
overlap between two vectors VAg; and VN, one uses
the tensor dot product “:” to determine the overlap be-

tween two dyadic tensors (18) \;€;€7 and Neie'T,

gl Nele’T= Trace(\; & el Ngle'l)

=N N (g0 €)* (9]

which represent eigenvalue—eigenvector pairs in different
voxels. Geometrically, we can view “overlap” as the de-
gree to which two diffusion ellipsoids (whose three major
axes have lengths of \/)Tl, VA, \/)\73 and \/E, VAL, \/)\7'3,
respectively) resemble each other, i.e., have similar size,
shape, and orientation (3,19). Other properties of these
dyadic tensors that allow us to establish the correspon-
dence between them and the principal axes of the diffu-
sion ellipsoid are described in the Appendix.

To account for the three-dimensional character of aniso-
tropic diffusion, we sum the “overlaps” between corre-
sponding eigenvalue—eigenvector pairs or dyadics in two
different voxels:

> NN (g €)% [10]

i=1
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This quantity contains all eigenvalue—eigenvector pairs,

weighting the dot product between eigenvectors by the

product of the square root of their corresponding eigenval-

ues. Normalizing this quantity using its global maximal
3

value 2 \;\/, we obtain a new nondimensional scalar mea-

1M
i=1

sure of intervoxel overlap between two diffusion tensors,
C .
g

3
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By construction, 0 < C, = 1, where 0 indicates no overlap
and 1 indicates complete overlap.

Note that the dot product of corresponding eigenvectors
is squared. This removes the sign ambiguity discussed
earlier, since whatever the signs of €; and €/, the square of
their dot product is always the same value. The tensor
space distance measure has the additional desirable fea-
ture of always yielding the smallest distance between any
three pairs of dyadics.

It is also possible to consider an overlap function that
uses only the eigenvectors to sort the eigenvalues. This
quantity measures the degree of overlap between unit dy-
adics representing the principal axes of diffusion tensors
in different voxels:

1 3
Ci=3 2 (&g)" [12]
i=1

The scheme in Eq. [11] appears reasonable in some
ordered anisotropic fibrous tissues, where it is usually
more important to assign the (largest) eigenvalue (i.e., the
one associated with the fiber-tract direction) correctly. (A
notable exception is anisotropic diffusion, in which the
diffusion ellipsoid assumes a pancake geometry, where the
eigenvector associated with the smallest eigenvalue de-
fines the axis of symmetry of diffusion.) But, in isotropic
media, where all eigenvalues are equal, these methods
properly assign each eigenvalue—eigenvector pair an equal
weight. Second, particularly when SNR is low, some eig-
envalues estimated using multivariate linear regression (2)
could be negative (6). Although this is not plausible phys-
ically, it is nonetheless possible mathematically, since
each diffusion tensor is not explicitly constrained to be
positive definite (i.e., having all positive eigenvalues). If an
eigenvalue is negative, then negative cross-terms of the
form N\ could appear in Eq. [11], contrary to our earlier
assumption; so when calculating C,, we must first check
whether any eigenvalue is negative. If so, we set it to a
negligibly small positive number (e.g., 10 ~°® pm?®/sec). This
problem does not arise when using Eq. [12].

As an aside, since we plan to use this overlap measure to
sort eigenvalues and eigenvectors of the diffusion tensor, it
must be sensitive to their order. Therefore, we could not
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use previously proposed measures of diffusion similarity
(4), such as

3 3
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[13]
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which are insensitive to the order or assignment of the
eigenvalue—eigenvector pairs (1,3,4).

Overlap Measurements Within an ROI

So far, we have described a method to compare the degree
of overlap between pairs of dyadic tensors in different
voxels. To apply this to sorting eigenvalue—eigenvector
pairs within an ROI, we first take the arithmetic average of
all the diffusion tensors within an ROI to determine the
ROI-averaged diffusion tensor. We then find and sort its
eigenvalues by magnitude. This average tensor becomes
the reference tensor we use subsequently to sort each
eigenvalue—eigenvector pair within each voxel of the ROL
We choose the order of the eigenvalue—eigenvector pairs
within each voxel that maximizes the intervoxel overlap
function with respect to the reference tensor. Using these
new assignments, we now obtain ROI-sorted values of \,,
N, and A, as well as €, €,, and &,.

Caveats and Clarifications

Some precautions must be taken in using this approach.
First, the overlap measure should be applied to voxels
within an ROI in which the diffusion tensor field is ap-
proximately homogeneous. This condition can be tested
by using maps of Trace(D), of the organizational (1,20) and
lattice anisotropy indices (6), and of the fiber direction
field within the ROI (1,20-22). By homogeneity of diffu-
sion properties within an ROI, we do not assume that
fibers within the voxels are necessarily continuous or con-
nected to each other, just that their diffusion properties or
characteristics (3,4) are similar. In fact, we can consider
ROIs containing tissue in different regions.

NUMERICAL RESULTS

Monte Carlo simulations of DT-MRI experiments de-
scribed previously in Ref. 6 were performed using MR
parameters given in Ref. 13. Simulations were carried out
for ROIs assumed to contain homogeneous tissue with
diffusion properties representative of brain white matter,
gray matter, and CSF obtained in DT-MRI studies of nor-
mal human brain (13). Human brain parenchyma was as-
sumed to have Trace(D) = A\, + A\, + Ay = 2100 um?/sec
(13).

In Fig. 1, the ROI-averaged \,, \,, and \,, and their
standard errors are given vs. the signal-to-noise ratio
(SNR). Here, 5000 Monte Carlo repetitions were performed
to obtain precise estimates of the means and standard
deviations. Orange, Yellow, and Purple lines indicate ROI-
averaged eigenvalues sorted by magnitude; Red, Green,
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FIG. 1. Monte Carlo simulations of DT-MRI experiments fora 5 X 5
ROI. The ROI-averaged \4, \,, and A3, and their standard errors are
given vs. the signal-to-noise ratio (SNR). Orange, Yellow, and Purple
lines indicate ROI-averaged eigenvalues sorted by magnitude; Red,
Green, and Blue lines indicate ROl-averaged eigenvalues sorted
using the new dyadic tensor formalism. a: Isotropic gray matter with
true values \; = A\, = \; = 700 um?/sec. b: Fully anisotropic tissue
(i.e., three distinct eigenvalues with Ay > X\, > \;). c: Tissue with
prolate or cigarlike diffusion properties (i.e., Ay > \, = \3). d: Tissue
with oblate or pancakelike diffusion properties (i.e., \; = A\, > \g).
The ROl-averaged \; with magnitude sorting is significantly more
biased above its true value than with dyadic sorting, whereas the
ROIl-averaged \; with magnitude sorting is significantly more biased
below its true value than with dyadic sorting for all SNR. Moreover,
the sample standard deviations for all ROl-averaged eigenvalues
are significantly smaller when sorted by magnitude than when
sorted by the dyadic method for all SNR.

and Blue lines indicate ROI-averaged eigenvalues sorted
using this new method. In Fig. 1a, results are shown for
isotropic gray matter using true values, A, = N\, = \; =
700 pm?/sec; in Fig. 1b, results are shown for fully aniso-
tropic tissue satisfying A, > N, > A, (i.e., all three eigen-
values distinct) with X\;/\, = 1.5 and \,/\; = 1.5; in Fig.
1c, results are shown for tissue with prolate or cigarlike
diffusion properties (i.e., true diffusivities satisfying A, >
N\, = N,), with \;/\, = 1.5; and in Fig. 1d, results are shown
for tissue with oblate or pancakelike diffusion properties
(i.e., true diffusivities satisfying A, = N, > \;), with \,/
N, = 1.5. In all cases, the ROI-averaged \, sorted by mag-
nitude is significantly more biased above the true value
than the ROI-averaged A, sorted by the dyadic method,
whereas the ROI-averaged A, sorted by magnitude is sig-
nificantly more biased below the true value than the ROI-
averaged A, sorted by the dyadic method for all SNR.
Moreover, the sample standard deviations for all ROI-
averaged eigenvalues sorted by magnitude are significantly
smaller than those for the ROI-averaged eigenvalues sorted
by the dyadic method for all SNR (see Tables 1 and 2).
These tables also show a significant reduction in the bias
and an increase in the variance of all the ROI-averaged
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Table 1
Summary of Monte Carlo DT-MRI Simulation Results for Four Paradigmatic Tissue Types Showing Bias and Variances for Both
Eigenvalues and Eigenvectors of the Effective Diffusion Tensor at SNR = 10*
Anisotropic )\}1101 _ )\'i'rue )\12101 _ )\%‘rue )\};01 _ )\'é‘rue 611<01 61;0[ 6_};01
. 0, o, 0, . 0y o, o, .
(1.2:1.2) % < T > %o ( N ) % < T ) Yo <)\;I‘rue) %o ()\Ztu&) % <)\"§rue>
Magnitude 10.6 0.5 -15.5 2.76 2.72 3.67
Dyadic 3.1 -0.3 -3.8 3.92 4.73 5.65
1 + 1 2 + 2 3 + 3
26,[deg] A,[deg] Abg[deg] pre pitE \g
\/ 2B \/ 287 2B
Magnitude 9.1 23.4 10.4 0.54 0.73 0.57
Dyadic 7.7 9.6 7.5 0.35 0.39 0.35
Cigar AROI _ )\ True NROT _ \True AROT _ \True grot grot grot
(1 21) (VO T % T OA) T OA) W (VO W % W
Magnitude 14.0 5.8 —224 2.81 2.78 2.98
Dyadic 2.8 2.8 -5.9 4.29 5.24 5.09
B:+Bi B+ B3 B + B3
A8,[deg] A8,[deg] AB5[deg] \ 28] \ 2p} 267
Magnitude 13.1 50.1 45.7 0.8 0.7 0.6
Dyadic 9.5 46.3 45.7 0.4 0.4 0.4
Pa(r;c;al;? » ()\11201 _ )\;rme> » <)\§m o )\'{ru(—l) y <)\13101 o )\Irue) y <6_11101) » <6§OI> » <6_§m>
s o )\;frue o )\grue o )\};rue 0 )\}'rue o )\'Zl"rue o )\;{rue
Magnitude 20.6 -5.8 -17.8 2.90 2.45 3.28
Dyadic 5.4 -2.6 -3.4 4.60 4.60 5.51
B:+Bi B+ B3 B + B3
A6,[deg] A8,[deg] Ab,[deg] \ 2pi \ 2pt 287
Magnitude 46.8 51.6 13.3 0.7 0.8 0.6
Dyadic 46.2 46.6 9.3 0.4 0.4 0.4
Isotropic AROT _ \True AROT _ )\True AROT _ )\True gror grot gkt
(1 1) 0/0 T % T % W OA) W 0/0 W % W
Magnitude 26.4 -0.6 —25.8 1.15 1.05 1.57
Dyadic 71 -0.1 -7.0 1.70 1.71 1.93
Bi+Bi B+ B3 B + 83
A0, [deg] A0,[deg] A0;[deg] \ 2g! \ o2} 23
Magnitude 22.4 51.9 241 0.8 0.8 0.8
Dyadic 8.1 8.6 8.3 0.4 0.4 0.4

*Trace(D) for all simulations is 2100 um?/sec. For the isotropic case, \; = A, = A\; = 700 um?/sec. For the anisotropic case, \;/\, = 1.2
and \,/A\; = 1.2. For the prolate or cigarlike case, N\{/\, = 1.2. For the oblate or pancakelike case, \,/\; = 1.2.

eigenvalues at SNRs of 10 and 25 for the four paradigmatic
cases of diffusion anisotropy.

Using the same tissue properties as before, we also in-
vestigated the effect that missorting eigenvalues has on the
distribution of their corresponding eigenvectors. To do
this, we introduce a new way to represent the three dy-
adics in each voxel and to visualize their distribution
within an ROL In Fig. 2, the pairs *V\,&,, *V\,&,, and
+V\4&, are displayed as principal axes of a diffusion
ellipsoid, and assigned Red, Green, and Blue, respectively,
after sorting by either method. For all voxels within the ROI,
these objects are collated and displayed together. As a visual
aid, an ellipsoid with principal axes =0.9V\]™egime,
+0.9V A\ meglme and +0.9V iM%l is constructed to
show the size, shape, and orientation of the underlying
root-mean-square (rms) displacement ellipsoid.

First, in Fig. 2a and b we assume the same isotropic
diffusion properties as in Fig. 1a. In Fig. 2a, eigenvalues
are sorted by magnitude. The distribution of the eigen-
vectors appears uniform, but one can see the concentric
spherical shells containing Red, Green, and Blue points.
In Fig. 2b, the eigenvalue—eigenvector pairs are sorted
using the new method. Here, the three eigenvectors are
localized within different sectors of the spherical ellip-
soid, but colored points are no longer concentrically
distributed. In Fig. 2c and d we use the diffusion prop-
erties as in Fig. 1d for an oblate or pancakelike tissue. In
Fig. 2c, in the case of magnitude sorting, there are clus-
ters of the Blue points around the axis of symmetry with
concentric bands of uniformly distributed Red and
Green points distributed around the equatorial plane. In
Fig. 2d, in the case of dyadic sorting, the Blue points
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Table 2
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Summary of Monte Carlo DT-MRI Simulation Results for Four Paradigmatic Tissue Types Showing Bias and Variances for Both
Eigenvalues and Eigenvectors of the Effective Diffusion Tensor at SNR = 25~

Anisotropic . )\{(Ol _ )\{rue . )\501 _ )\'zl'rue . )\§01 _ )\g'rue . 6'fOI . 61;01 . 6'§OI
(1.2:1.2) % BV % T % BV % N %o N7 %o N
Magnitude 1.5 0.2 2.5 1.23 1.33 1.76
Dyadic 1.2 -0.2 -1.5 1.32 1.63 2.01
1 + 1 2 + 2 3 + 3
20,[deg] A6,[deg] Abg[deg] Pt s P+ s s
\/ 2B \/ 2B5 2B
Magnitude 3.0 4.7 3.4 0.2 0.4 0.3
Dyadic 3.1 4.4 3.3 0.2 0.3 0.1
Cigar NROT _ \True AROT _ \True AROT _ \True kot grot grot
1 2 3 1 2 3
Magnitude 2.3 4.9 -7.8 1.23 1.22 1.29
Dyadic 1.4 0.7 —-2.5 1.44 1.93 1.89
Bi+Bi B:+ B3 2+ B
A0, [deg] A8,[deg] A85[deg] \ 2] \2g 203
Magnitude 4.2 46.2 45.3 0.3 0.7 0.6
Dyadic 4.3 45.4 45.3 0.3 0.4 0.4
Pancake AROT _ \True AROT _ \True AROT _ \True gkt grot grot
(1 :1 2) % )\True 0/0 )\True % )\Tme % )\True 0/0 )\True 0/0 )\True
1 2 3 1 2 3
Magnitude 6.9 —4.4 —3.1 1.15 1.05 1.57
Dyadic 2.3 -0.8 -1.7 1.70 1.71 1.93
Bi+BS B:+ B3 2+ B
A6,[deg] AB,[deg] Ab,[deg] \ 2pi \2pt 2@
Magnitude 45.9 45,5 4.5 0.6 0.7 0.4
Dyadic 45.4 45.5 4.5 0.4 0.4 0.3
ISOTII’-(;piC . AROT _ \True . AROT _ \True . AROT _ \True . gkt . grot . grot
(1:1) % v % v %o v % N %o N %o N
Magnitude 10.3 -0.1 —-10.2 1.15 1.01 1.10
Dyadic 2.8 -0.07 —-2.8 1.96 1.97 1.94
B:+BS B:+ B3 2+ B
A04[deg] A0,[deg] AB,[deg] \ 2p! \ 2p? 23
Magnitude 23.1 52.6 23.9 0.8 0.8 0.8
Dyadic 8.2 8.7 8.2 0.4 0.4 0.4

*Trace(D) for all simulations is 2100 um?/sec. For the isotropic case, \; = A, = A\; = 700 um?/sec. For the anisotropic case, \;/\, = 1.2
and \,/A\; = 1.2. For the prolate or cigarlike case, N\{/\, = 1.2. For the oblate or pancakelike case, \,/\; = 1.2.

still clustered around the axis of symmetry, but fewer
Green and Red points contaminate this region. More-
over, the Red and Green points no longer lie in different
“orbits” around the equatorial plane; Green and Red
clusters are now clearly visible. In Fig. 2e and f we use
the diffusion properties for an anisotropic or “asymmet-
ric” tissue as in Fig. 1b. In Fig. 2e, magnitude-sorting
results in a separation of Red, Green, and Blue points,
but each colored cluster is clearly contaminated by
points having other colors. In Fig. 2f, using dyadic sort-
ing, the distribution of the colored points is more local-
ized near their respective “true” principal axes, and
there is concomitantly less color contamination within
each cluster. The fact that there are relatively sharp
boundaries between the color clusters indicates that
measures in Egs. [11] and [12] yield similar results in
homogeneous ROIs.

Tables 1 and 2 also illustrate features of the eigenvector
distribution. They show a significant reduction in both the
angular bias A©O and in the angular dispersion at SNRs of 10
and 25. Note that the reduction of angular dispersion in the
degenerate cases, in which two or three eigenvalues are
equal, is artificial and we do not assign any significance to it.

Magnitude and dyadic sorting are also compared in Fig.
3. ROI-averaged \,, \,, and A, and their standard errors are
given as a function of the number of voxels within the ROL
Depending on the size of the ROI, 1000 to 10,000 Monte
Carlo repetitions were performed to obtain precise esti-
mates of ROI-mean and the standard errors of these eigen-
values. Results are shown for isotropic and anisotropic
cases. The long-dashed brown lines indicate the eigenval-
ues of the ROI-averaged tensor. Note, that the dyadically
sorted eigenvalues never converge to the true values, even
for infinitely large ROIs.
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Magnitude Sorted Dyadic Sorted

a Isotropic (Spherically Symmetric) b

FIG. 2. Spatial distribution of the eigenvectors within an ROI
weighted by their respective eigenvalues when sorted by magnitude
and by the dyadic tensor method. The pairs =V \;e4, =V \y¢,, and
+V/\s4, are assigned Red, Green, and Blue points, respectively.
The points are plotted with respect to a rms displacement ellipsoid
whose principal axes are +0.9 VA]™%e]™e, 0.9V \]"eel"e, and
+0.9V\Megl™e. a,b: Isotropic diffusion properties are those used
in Fig. 1a. c,d: Diffusion properties are assumed for an oblate or
pancakelike tissue as in Fig. 1d. e,f: Diffusion properties are as-
sumed for an anisotropic or “asymmetric” tissue as in Fig. 1b.

DISCUSSION

When the eigenvalues are sorted by magnitude, the means
and variances of their ROI-averaged eigenvalues are biased
(e.g., see Fig. 1). There is an artifactual bias in the sample
mean eigenvalues and an artifactual reduction in their
variance. This combination could lead one to the errone-
ous conclusion that differences between these eigenvalues
are statistically significant, particularly in isotropic media
(see Fig. 1a) where, in the absence of background noise, all
“true” eigenvalues are equal. Figure 1 also shows that this
new sorting method significantly reduces the bias in the
estimate of the mean and increases the estimated variance
of each ROI-averaged eigenvalue at all SNR, in all Monte
Carlo simulations. These two effects ensure greater overlap
of the distributions of the ROI-averaged eigenvalues. More-
over, the same improvement is seen in the simulation of
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anisotropic media, including fully anisotropic (Fig. 1b),
prolate or cigarlike (Fig. 1c), and oblate or pancakelike
(Fig. 1d), and in the distributions of eigenvalues over the
entire range of SNRs. It should also be noted in Fig. 1 that
at SNR of 15 and greater there is no sorting bias for aniso-
tropic tissue. This, of course, is dependent on the degree of
anisotropy. For less-anisotropic structures sorting bias can
be significant even at much larger SNRs.

Figure 2 presents a new way to illustrate graphically the
misclassification of magnitude-sorting eigenvalue—eigen-
vector pairs. In Fig. 2e, there are many more Green points
in the Red region, and many more Blue points in the Green
region than we see in Fig. 2f, where the colored clusters are
more homogeneous. This indicates that after dyadic sort-
ing, there are fewer misclassifications. We also see from
Fig. 2 that properly classifying eigenvalues within an ROI
decreases the variance of their corresponding eigenvectors
(i.e., scatter about the mean eigenvector). This is reflected
in the clouds of colored points being more dispersed in
magnitude sorting than in dyadic sorting. The reduction in
the dispersion of eigenvectors is also demonstrated in
Tables 1 and 2.

This reduction in the variance of the eigenvectors, ac-
companied by an increase in the variance of the distribu-
tion of the eigenvalues, appears counterintuitive. This par-
adox can be understood by recognizing that 1) eigenvalues
and their corresponding eigenvectors are always calcu-
lated and sorted in pairs, and that 2) the three eigenvectors
in each voxel are mutually orthogonal. From 1) we see that
when eigenvalues are misclassified, so are their corre-
sponding eigenvectors. Thus, from 2) we conclude that
swapping eigenvalues always leads to swapping orthogo-
nal eigenvectors, leading to a broadening of the eigenvec-
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FIG. 3. ROl-averaged \,, \,, and A5, and their standard errors given
as a function of the number of voxels within the ROI, at SNR = 15
for two cases (a) isotropic diffusion tensor with Ay = N\, = Az = 700
wm?/sec, and (b) anisotropic diffusion tensor with A\, = 768, A\, =
698, and \; = 634 pm?/sec, respectively. Orange, Yellow, and
Purple lines indicate ROIl-averaged eigenvalues sorted by magni-
tu